14.5

The Chain Rule

The Chain Rule

We know that the Chain Rule for functions of a single variable gives the rule for differentiating a composite function: If $y=f(x)$ and $x=g(t)$, where f and g are differentiable functions, then y is indirectly a differentiable function of t and

$$
1 \quad \frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

For functions of more than one variable, the Chain Rule has several versions, each of them giving a rule for differentiating a composite function.

The Chain Rule

The first version (Theorem 2) deals with the case where $z=f(x, y)$ and each of the variables x and y is, in turn, a function of a variable t.

This means that z is indirectly a function of t, $z=f(g(t), h(t))$, and the Chain Rule gives a formula for differentiating z as a function of t. We assume that f is differentiable.

The Chain Rule

We know that this is the case when f_{x} and f_{y} are continuous.
2 The Chain Rule (Case 1) Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(t)$ and $y=h(t)$ are both differentiable functions of t. Then z is a differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Since we often write $\partial z / \partial x$ in place of $\partial f / \partial x$, we can rewrite the Chain Rule in the form

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

Example 1

If $z=x^{2} y+3 x y^{4}$, where $x=\sin 2 t$ and $y=\cos t$, find $d z / d t$ when $t=0$.

Solution:
The Chain Rule gives

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& =\left(2 x y+3 y^{4}\right)(2 \cos 2 t)+\left(x^{2}+12 x y^{3}\right)(-\sin t)
\end{aligned}
$$

It's not necessary to substitute the expressions for x and y in terms of t.

Example 1 - Solution

We simply observe that when $t=0$, we have $x=\sin 0=0$ and $y=\cos 0=1$.

Therefore

$$
\left.\frac{d z}{d t}\right|_{t=0}=(0+3)(2 \cos 0)+(0+0)(-\sin 0)=6
$$

The Chain Rule

We now consider the situation where $z=f(x, y)$ but each of x and y is a function of two variables s and t :
$x=g(s, t), y=h(s, t)$.
Then z is indirectly a function of s and t and we wish to find $\partial z / \partial s$ and $\partial z / \partial t$.

We know that in computing $\partial z / \partial t$ we hold s fixed and compute the ordinary derivative of z with respect to t.

Therefore we can apply Theorem 2 to obtain

$$
\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
$$

The Chain Rule

A similar argument holds for $\partial z / \partial s$ and so we have proved the following version of the Chain Rule.

3 The Chain Rule (Case 2) Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(s, t)$ and $y=h(s, t)$ are differentiable functions of s and t. Then

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
$$

Case 2 of the Chain Rule contains three types of variables: s and t are independent variables, x and y are called intermediate variables, and z is the dependent variable.

The Chain Rule

Notice that Theorem 3 has one term for each intermediate variable and each of these terms resembles the one-dimensional Chain Rule in Equation 1.

To remember the Chain Rule, it's helpful to draw the tree diagram in Figure 2.

Figure 2

The Chain Rule

We draw branches from the dependent variable z to the intermediate variables x and y to indicate that z is a function of x and y. Then we draw branches from x and y to the independent variables s and t.

On each branch we write the corresponding partial derivative. To find $\partial z / \partial s$, we find the product of the partial derivatives along each path from z to s and then add these products:

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}
$$

The Chain Rule

Similarly, we find $\partial z / \partial t$ by using the paths from z to t.

Now we consider the general situation in which a dependent variable u is a function of n intermediate variables x_{1}, \ldots, x_{n}, each of which is, in turn, a function of m independent variables t_{1}, \ldots, t_{m}.

Notice that there are n terms, one for each intermediate variable. The proof is similar to that of Case 1.

The Chain Rule

4 The Chain Rule (General Version) Suppose that u is a differentiable function of the n variables $x_{1}, x_{2}, \ldots, x_{n}$ and each x_{j} is a differentiable function of the m variables $t_{1}, t_{2}, \ldots, t_{m}$. Then u is a function of $t_{1}, t_{2}, \ldots, t_{m}$ and

$$
\frac{\partial u}{\partial t_{i}}=\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{i}}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{i}}+\cdots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{i}}
$$

for each $i=1,2, \ldots, m$.

Implicit Differentiation

The Chain Rule can be used to give a more complete description of the process of implicit differentiation.

We suppose that an equation of the form $F(x, y)=0$ defines y implicitly as a differentiable function of x, that is, $y=f(x)$, where $F(x, f(x))=0$ for all x in the domain of f.

If F is differentiable, we can apply Case 1 of the Chain Rule to differentiate both sides of the equation $F(x, y)=0$ with respect to x.

Since both x and y are functions of x, we obtain

$$
\frac{\partial F}{\partial x} \frac{d x}{d x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0
$$

Implicit Differentiation

But $d x / d x=1$, so if $\partial F / \partial x \neq 0$ we solve for $d y / d x$ and obtain

$$
\frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}=-\frac{F_{x}}{F_{y}}
$$

To derive this equation we assumed that $F(x, y)=0$ defines y implicitly as a function of x.

Implicit Differentiation

The Implicit Function Theorem, proved in advanced calculus, gives conditions under which this assumption is valid: it states that if F is defined on a disk containing (a, b), where $F(a, b)=0, F_{y}(a, b) \neq 0$, and F_{x} and F_{y} are continuous on the disk, then the equation $F(x, y)=0$ defines y as a function of x near the point (a, b) and the derivative of this function is given by Equation 6.

Example 8

Find y^{\prime} if $x^{3}+y^{3}=6 x y$.

Solution:
The given equation can be written as

$$
F(x, y)=x^{3}+y^{3}-6 x y=0
$$

so Equation 6 gives

$$
\begin{aligned}
\frac{d y}{d x} & =-\frac{F_{x}}{F_{y}} \\
& =-\frac{3 x^{2}-6 y}{3 y^{2}-6 x}=-\frac{x^{2}-2 y}{y^{2}-2 x}
\end{aligned}
$$

Implicit Differentiation

Now we suppose that z is given implicitly as a function $z=f(x, y)$ by an equation of the form $F(x, y, z)=0$.

This means that $F(x, y, f(x, y))=0$ for all (x, y) in the domain of f. If F and f are differentiable, then we can use the Chain Rule to differentiate the equation $F(x, y, z)=0$ as follows:

$$
\frac{\partial F}{\partial x} \frac{\partial x}{\partial x}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0
$$

Implicit Differentiation

But $\frac{\partial}{\partial x}(x)=1$ and $\frac{\partial}{\partial x}(y)=0$
so this equation becomes

$$
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0
$$

If $\partial F / \partial z \neq 0$, we solve for $\partial z / \partial x$ and obtain the first formula in Equations 7.

The formula for $\partial z / \partial y$ is obtained in a similar manner.

Implicit Differentiation

$$
\frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \quad \frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}
$$

Again, a version of the Implicit Function Theorem stipulates conditions under which our assumption is valid:
if F is defined within a sphere containing (a, b, c), where $F(a, b, c)=0, F_{z}(a, b, c) \neq 0$, and F_{x}, F_{y}, and F_{z} are continuous inside the sphere, then the equation $F(x, y, z)=0$ defines z as a function of x and y near the point (a, b, c) and this function is differentiable, with partial derivatives given by (7).

